Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning
In this paper, we proposed a new semi-supervised multi-manifold learning method, called semisupervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturall...
متن کاملA unified semi-supervised dimensionality reduction framework for manifold learning
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of mani...
متن کاملManifold-preserving graph reduction for sparse semi-supervised learning
Representing manifolds using fewer examples has the advantages of eliminating the influence of outliers and noisy points and simultaneously accelerating the evaluation of predictors learned from the manifolds. In this paper, we give the definition of manifold-preserving sparse graphs as a representation of sparsified manifolds and present a simple and efficient manifold-preserving graph reducti...
متن کاملMulti-Manifold Semi-Supervised Learning
We study semi-supervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multi-manifold setting. We then propose a semi-supervised learning algorithm that separates different manifolds into decision sets, and performs supervised learning within each set. Our algorithm involves a n...
متن کاملSemi-supervised learning in Spectral Dimensionality Reduction
Biometric face data are essentially high dimensional data and as such are susceptible to the well-known problem of the curse of dimensionality when analyzed using machine learning techniques. Various dimensionality reduction methods have been proposed in the literature to represent high dimensional data in a lower dimensional space. Research has shown that biometric face data are non-linear in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and Communications
سال: 2015
ISSN: 2327-5219,2327-5227
DOI: 10.4236/jcc.2015.311006